* Every time you take the derivative of a variable, you must multiply by at represent rates of change

Area of a triangle: $A = \frac{1}{2}bh$ Area of a circle: $A = \pi r^2$ Circumference: $C = 2\pi r$

Surface area of a sphere: $SA = 4\pi r^2$

Surface area of a cube: $SA = 6x^2$

Volume of a sphere: $V = \frac{4}{3}\pi r^3$

Volume of a cube: $V = s^3$

Volume of a cylinder: $V = \pi r^2 h$

Volume of a cone: $V = \frac{1}{3}\pi r^2 h$

cannot convert

The radius of a sphere has a length of 24 feet but is decreasing at a rate of 3 yards per minute.

How fast is the surface area of the sphere changing?

-603.19

A point is moving along the graph of $x^2 + y^2 = 25$ so that its x-coordinate changes at a rate of 2 units per second. When x is 3 units, what is the rate of change in the y-coordinate?

